On a stabilized colocated Finite Volume scheme for the Stokes problem

نویسندگان

  • R. Eymard
  • R. Herbin
  • J. C. Latché
چکیده

We present and analyse in this paper a novel colocated Finite Volume scheme for the solution of the Stokes problem. It has been developed following two main ideas. On one hand, the discretization of the pressure gradient term is built as the discrete transposed of the velocity divergence term, the latter being evaluated using a natural finite volume approximation; this leads to a nonstandard interpolation formula for the expression of the pressure on the edges of the control volumes. On the other hand, the scheme is stabilized using a finite volume analogue to the Brezzi-Pitkäranta technique. We prove that, under usual regularity assumptions for the solution (each component of the velocity in H(Ω) and pressure in H(Ω)), the scheme is first order convergent in the usual finite volume discrete H norm and the L norm for respectively the velocity and the pressure, provided, in particular, that the approximation of the mass balance fluxes is of second order. With the above-mentioned interpolation formulae, this latter condition is satisfied only for particular meshings: acute angles triangulations or rectangular structured discretizations in two dimensions, and rectangular parallelepipedic structured discretizations in three dimensions. Numerical experiments confirm this analysis and show, in addition, a second order convergence for the velocity in a discrete L norm. Résumé. Nous présentons et analysons dans cet article un nouveau schéma Volumes Finis collocalisé pour la résolution du problème de Stokes. Son développement a été mené en suivant deux idées essentielles. D’une part, la discrétisation du terme de gradient de pression est construite comme la transposée discrète du terme de divergence, ce dernier étant calculé par une approximation volumes finis usuelle ; cela conduit à utiliser pour l’expression de la pression aux faces des éléments une formule d’interpolation non-standard. En second lieu, nous mettons en œuvre une technique de stabilisation qui peut être interprétée comme l’analogue en volumes finis de la stabilisation proposée par Brezzi et Pitkäranta. Nous démontrons que, sous les hypothèses de régularité usuelles (appartenance à H(Ω) de chaque composante de la vitesse et appartenance à H(Ω) de la pression), le schéma est d’ordre un en norme H discrète et en norme L pour respectivement la vitesse et la pression, pourvu notamment que l’approximation des flux associés au bilan de masse soit d’ordre deux. Avec les formules d’interpolation précitées, cette dernière condition n’est vérifiée que pour des maillages particuliers: maillages réguliers en quadrangles ou triangulations ne comportant que des angles aigus en dimension deux, maillages réguliers en parallélépipèdes en dimension trois. Les tests numériques confirment cette analyse et mettent en évidence, en outre, une convergence d’ordre deux de la vitesse dans une norme L discrète. 1991 Mathematics Subject Classification. 65N12,65N15,65N30,76D07,76M12. May 2005.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence Analysis of a Colocated Finite Volume Scheme for the Incompressible Navier-stokes Equations on General 2 or 3d Meshes

Abstract. We study a colocated cell centered finite volume method for the approximation of the incompressible Navier-Stokes equations posed on a 2D or 3D finite domain. The discrete unknowns are the components of the velocity and the pressures, all of them colocated at the center of the cells of a unique mesh; hence the need for a stabilization technique, which we choose of the Brezzi-Pitkärant...

متن کامل

Unstructured cell centred schemes for the Navier-Stokes equations

This paper presents a review of recent finite volume schemes which were developed for the numerical simulation of the incompressible Navier-Stokes equations on unstructured meshes. Both a staggered scheme and a colocated scheme were analysed. The colocated scheme, where the unknowns u, v and p are all located within the discretization cell, is easy to implement ; moreover, it generalizes to 3D....

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

Stabilized Ddfv Schemes for Stokes Problemwith Variable Viscosity on General 2d Meshes

Abstract. “Discrete Duality Finite Volume” schemes (DDFV for short) on general meshes are studied here for Stokes problems with variable viscosity with Dirichlet boundary conditions. The aim of this work is to analyze the well-posedness of the scheme and its convergence properties. The DDFV method requires a staggered scheme, the discrete unknowns, the components of the velocity and the pressur...

متن کامل

Analysis of cell centred finite volume methods for incompressible fluid flows

The aim of this review paper is to give some insight on some recent developments on the analysis of cell centred finite volume schemes for incompressible fluid flows. We first recall the cell centred finite volume scheme for convection diffusion equations, and give the mathematical tools which are needed for the convergence study. We then turn to the study of a recent scheme which was developed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006